Bubble-propelled micromotors for enhanced transport of passive tracers.

نویسندگان

  • Jahir Orozco
  • Beatriz Jurado-Sánchez
  • Gregory Wagner
  • Wei Gao
  • Rafael Vazquez-Duhalt
  • Sirilak Sattayasamitsathit
  • Michael Galarnyk
  • Allan Cortés
  • David Saintillan
  • Joseph Wang
چکیده

Fluid convection and mixing induced by bubble-propelled tubular microengines are characterized using passive microsphere tracers. Enhanced transport of the passive tracers by bubble-propelled micromotors, indicated by their mean squared displacement (MSD), is dramatically larger than that observed in the presence of catalytic nanowires and Janus particle motors. Bubble generation is shown to play a dominant role in the effective fluid transport observed in the presence of tubular microengines. These findings further support the potential of using bubble-propelled microengines for mixing reagents and accelerating reaction rates. The study offers useful insights toward understanding the role of the motion of multiple micromotors, bubble generation, and additional factors (e.g., motor density and fuel concentration) upon the observed motor-induced fluid transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors

Bubble-propelled catalytic micromotors have recently been attracting much attention. A bubble-propulsion mechanism has the advantage of producing a stronger force and higher speed than other mechanisms for catalytic micromotors, but the nature of the fluctuated bubble generation process affects the motions of the micromotors, making it difficult to control their motions. Thus, understanding of ...

متن کامل

Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.

The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble...

متن کامل

Small power: Autonomous nano- and micromotors propelled by self-generated gradients

In this article we review the development, current status and future prospects of nano-and microscale motors propelled by locally generated fields and chemical gradients. These motors move autonomously in fluids by converting different sources of energy into mechanical work. Most commonly they are particles that are similar in their largest dimensions to bacteria (a few microns) or eukaryotic c...

متن کامل

Understanding the efficiency of autonomous nano- and microscale motors.

We analyze the power conversion efficiency of different classes of autonomous nano- and micromotors. For bimetallic catalytic motors that operate by a self-electrophoretic mechanism, there are four stages of energy loss, and together they result in a power conversion efficiency on the order of 10(-9). The results of finite element modeling agree well with experimental measurements of the effici...

متن کامل

Self-Propelled Micromotors for Cleaning Polluted Water

We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 30 18  شماره 

صفحات  -

تاریخ انتشار 2014